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GUIDEBOOK TO THE CARBONIFEROUS AND EARLY PALEOZOIC
BASIN AND SOME SHELF FACIES IN CENTRAL ARKANSAS

By

Charles G. Stone and John C. Meredith

INTRODUCTION

The field trip is scheduled for three days and consists of 28 stops
(Fig. 1), several of which may be optional. The stops (Fig. 2) are
designed to examine some seventeen Early to Middle Pennsylvanian
submarine fan and other deep-water deposits; five Mississippian
through Early Ordovician deep-water facies; three Middle
Pennsylvanian deltaic progradations; two Ordovician and Devonian
mostly pelagic "porcellanite" accumulations; and finally but not
least - scenic thermal springs and tufa (Hot Springs) then onto the
largest clear quartz crystal mine in North America.

The first day is a traverse north from the frontal Ouachita Mountains
and "Maumelle chaotic belt" at Little Rock to the southeastern Arkoma
basin at Conway and Morrilton, then return back to the south through
the frontal Ouachitas to Perryville and finally proceeding to our
destination in the central Ouachitas at Hot Springs. We will view
respectively-deep (proximal) to shallow marine rocks in the morning
and shallow to mostly proximal deep marine strata in the afternoon

(Fig. 9). The second day is a transect to the Athens Plateau (Fig.
4) region of the southeastern Ouachita Mountains in the Lake DeGray
area near Friendship, Arkadelphia, Bismarck, and Hollywood. The

entire day is scheduled to examine the submarine fan sequence
comprising the 6,000+ foot thick Jackfork Formation. To most recent
investigators, these rocks have recognizable sheet-like clastic
intervals of both upper and middle submarine fan environments of
deposition. On day three, we will wvisit fine exposures of Lower
Mississippian through Lower Ordovician (generally) pre-orogenic
strata in the central Ouachita Mountains in the vicinity of Hot
Springs, Mountain Pine, Blue Springs, and Crows. The classic exotic-
bearing proximal fan-channel deposits in the Crystal Mountain
Formation at the Ron Coleman quartz crystal mine will be a highlight.

We wish to express our sincere thanks to all the gracious individuals
who have granted us permission to be on their property or who have
been of assistance in other ways! Some of these people include:
Hugh Durham, IV of International Paper Company, Kenny Hand of the 0ld
Big Rock Quarry, Brian Westfall of the U.S. Corps of Engineers at
Lake DeGray, and Randy Frazier at Pinnacle Mountain State Park.
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Lastly, we wish to thank all the superb geologists who have helped
to interpret these unique rock formations. Special thanks are due
to the following: Boyd Haley, Rufus LeBlanc, Doug Jordan, Roger
Slatt, Arnold Bouma, Martin Link, Fred Keller, Rod Tillman, Jim
Coleman, Michael Roberts, Alan Thomson, Ernie Glick, Kaspar Arbenz,
Lloyd Yeakel, Lewis Cline, Robert Morris, Tom Hendricks, and last but
not least -- Hugh Miser!
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ITINERARY FOR FIELD TRIP IN CENTRAL ARKANSAS

Charles G. Stone and John C. Meredith, October 19-22, 1993

Tuesday, Oct. 19, 1993

6:00 p.m.

6:30 p.m.

Wednesday, Oct 20, 1993

Stop 1

Stop 2

Stop 3

Stop 4

Stop 5

Stop 6

LUNCH

Stop 7

Stop 8

Stop 9

Stop 10

Steop 1.1

Stop 12

Stop 13

Arrive in Little Rock at the Holiday Inn West
Holidome (501) 223-3000.

Happy Hour and Orientation.
Overview of Regional Geology and Depositional

Facies Ouachita Mountains and Arkoma Basin
(Stone) .

Little Rock to Morrilton to Hot Springs,
Arkansas.

Pinnacle Mountain State Park, Middle Jackfork,
Canyon and Exotic Fill.

I-430 Roadcut, Little Rock, Upper Jackfork
Downdip. Channel Fill and Levee.

Old Big Rock Quarry, North Little Rock, Upper
Jackfork, Canyon and Channel Fill.

Old Park Hill Quarry, North Little Rock, Upper
Jackfork, Channel Fill and Levee Deposits.

Roadcut near Levy, Middle Jackfork, Wildflysch-
Slope Facies.

Jeffrey Quarry. Upper Jackfork, Channel Fill and
Levee.

Bayou Meto Anticline, Cabot, Lower Atoka, 1,000’
Mid-fan Turbidites, Channels and Lobes.

Round Mountain Shale Pit, El1 Paso, Upper Atoka
Coal Beds.

I-30 Roadcut, Conway, Middle Atoka Delta.

Morrilton Roadcuts, Four Upper Atoka Deltaic
Exposures, Morrilton Anticline.

Roadcuts at Tom’s Mountain (Perryville), Lower
Atoka, Mid-fan Turbidites, Channels and Lobes.

Rock Shelter and Roadcut, Williams Junction,
Middle Jackfork, Channel Fill.

Roadcut Highway #9, north of Paron, Lower
Jackfork, Channel Fill and Slump mass.
_3_
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HOLIDAY INN LAKE HAMILTON (501) 525-1891

Thursday, Oct. 21, 1993 Hot Springs to Lake DeGray, Hollywood, and Hot
Springs.

Stop 14 Friendship Roadcut I-30, Upper Jackfork, Channels
and Lobes.

Stop 15 Murray Quarry, Upper Jackfork, Channel Lenses to
Sheet-1like Anatomy.

Stop 16 Lake DeGray Spillway, Classic Exposures of Middle
and Upper Jackfork, Fan Channels and Lobes.

Stop 17 ; Lake DeGray Intake, Downdip Correlations of Lake
DeGray Spillway Section.

Stop 18 Lake DeGray Dam Powerhouse, Upper Jackfork,
Channel Levee Complex.

Stop 19 DeRoche Ridge Roadcut, Initial Lowermost Jackfork
Turbidite (Mid-fan) Deposits.

Stop 20 Hollywood Quarry, Upper Jackfork, Channels and
Levees.

RETURN TO HOLIDAY INN LAKE HAMILTON IN HOT SPRINGS (501) 525-1891.

Friday, Oct. 22, 1993

Stop 21 Bypass around Hot Springs, Middle Stanley, Outer
Fan Deposits.
Stop 22 Hot Springs National Park Tour, Thermal Springs,
' Bath Houses, Tufa, Zigzag Mountains, etc.
Stop 23 City Quarry, Hot Springs,; Bigfork Chert,
"Porcellanite" - Turbidite Facies.
Stop 24 Hot Springs Water Works, Hot Springs Sandstone

Member, Channel Fill and Relationship to
Novaculite ("Diatomite").

Stop 25 ' Blakely Mountain Dam, Blakely Sandstone, Channel
and Levee Fill.

Stop 26 Ron Coleman’s Quartz Crystal Mine, Crystal
Mountain Sandstone, Exotic-bearing Canyon and
Upper Fan Channel Fill.

Stop 27 Tripoli Mine, Malvern Minerals Company, Arkansas
Novaculite Formation, Deep Marine Novaculite,
Conglomerates and Carbonaceous Shales.

Stop 28 Roadcut near Crows, Arkansas, Mazarn Formation,
Abyssal Plain Deposits.

PROCEED TO LITTLE ROCK AIRPORT
2 -
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EARLY TO MIDDLE PALEOZOIC
PALEOGEOGRAPHY

LATE PALEOZOIC
PALEOGEOGRAPHY

Fig. 19

From Link and Roberts, 1986
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Figure 25. Paleozoic stratigraphic section showing the relative thickness of units in

the basinal part of the Ouachita basin as related to time.

Note the starved-basin

(reduced sedimentation) phase for the Ordovician Bigfork and Polk Creek, Silurian
Blaylock and Missourl Mountain, and Devonlan-Mississippian Arkansas Novaculite
formations. Note also the perlod of very rapld sedimentation in Atoka tima.

From Link and Roberts, 1986
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Figure 26. A depositional environments and sequences typical
of modern deltas used as model for interpreting sequences
seen during first part of today’s trip (from LeBlanc, 1977). B

typical sequences of deltaic deposits.
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Flow 1
RETROGRESSIVE FLOWS

Flow 3
Flow 2

Flow 1

Downslope

RETROGRESSIVE FLOW DEPOSITS

Figure 29. (Caption on following page).
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Figure 29. Retrogressive flows (top) and retrogressive flow deposits (bottom).

Top. Retrogressive flows form when an initial failure forms a scarp. Successive failures
along the scarp result in scarp retreat and the generation of a series af flows that move
downslope, accelerate, become turbulent, and evolve into turbidity currents.

Bottom. As seen in the Jackfork Group, many sandstone units are composite layers made up
of a number, commonly 3 to 12, of individual sandstone beds, each probably
representing an individual flow. Individual flow units in the Ouachitas are between 5
and 15 inches thick; thicker flow packages range from about 3 to over 15 feet thick.
"A" shows a generalized flow package in a proximal setting. It consists of several
discrete flow units. In the Quachitas, flow units toward the middle of thicker flow
packages show undulating contacts representing zones of liquefaction and soft-
sediment loading and foundering. Downslope, flow behavior depends on the amount
of entrained mud. Purely mud flows would evolve as a series of debris flows (not
shown). Mud-poor flows tend to leave packages that pass upward into cross-
laminated units in intermediate (mid-fan ?) regions ("B") and into thin flat- (Tb) and
cross-laminated (Tc) turbidites at their distal extents ("C"). Muddy flows develop tails
that are watery, mobile debris flows. These deposit slurried muddy sand beds above
the current deposits in intermediate ("D") and distal ("E") regions. Some distal
deposits consist largely of sandy debris flows separated by fine, organic-rich,
laminated, hemipelagic shales.
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From Weimer (1989).
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Figure 38.North American sedimentary basins showing: (a) petroleum productive basins
with turbidite fields (dotted infill pattern), (b) petroleum productive basins (solid line), and
(c) non-petroleum productive basins (dashed line). Base map after St. John (1984).
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The following introduction to turbidity currents was extracted from:

Nelson, C.H., and Nilsen, T.H., 1984, Modern and Ancient Deep-Sea Fan
Sedimentation: SEPM Short Course No. 14, 404 p.
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CHAPTER 3. TURBIDITY-CURRENT OBSERVATIONS AND EXPERIMENTAL STUDIES
C. Hans Nelson

Observations

Many of the basic problems about mode of generation and physical
properties of turbidity currents are no better understood now than they were
10 to 20 years ago. Even within the past 10 years, there have been few new
laboratory experiments on the phenomena of turbidity currents because of the
basic scaling problem and inability to relate laboratory studies to events in
nature. Thus, a review of the older work remains pertinent to provide a
framework for understanding the processes depositing deep-sea-fan sediment.

In both modern and ancient deep-sea-fan deposits, graded beds that are
coarser-grained than the interbedded muds are observed to contain displaced
shallow-water plant and animal remains. They are obviously the product of
resedimentation of shallow-water debris to basin depths. These graded beds in
both modern and ancient deposits often occur in cone-shaped sediment deposits
with channel and interchannel areas. (Nelson and Kulm, 1973; Walker and
Mutti, 1973). The resedimented deposits of deep-sea fans are inferred to be
the product of various types of turbidity currents that occur on a wide
variety of scales and densities of flows. These inferences are based on
actual observations of some types of turbid flows, although many types of the
family of turbidity-current events have not been measured in natural events.

Observations of actual turbidity currents have been most commonly made in
lakes. The studies began in the late 19th century and continuefo the present
modern events. Movements of turbid water traced in Lake Mead revealed that 12
major turbidity currents flowed the 140-km length of the lake during a 14-year
period (Gould, 1951). The densities of these turbidity currents were as low
as 1.006 g/cm3, and the flows had average velocities of 25 cm/s.

Crater Lake's unusually large summer storm events cause sheet wash off
the caldera walls, resulting in visible nearsurface turbid flows that sink and
travel out toward the center of the lake over a day-long period at speeds
about half those observed in Lake Mead. Sediment stratigraphy from the basin
floor contains interbedded mud and graded sand beds (Nelson, 1967; Nelson et
al., in press). Thus, turbidity currents and their depositional products have
been measured and documented in several deep lakes.

The evidence for turbidity currents on a larger scale is inferential in
the marine environment. Resedimented graded sand layers in the modern deep-
sea fans associated with channeled topography already have been mentioned.
The most direct observations in the marine enviromment consist of recorded
slope failure, particularly near harbors, and sequential breaks of deep
submarine cables lying across canyon and channel pathways (Heezen and Ewing,
1952; Menard, 1964). In several well-documented cases, harbor areas or
structures have been modified or destroyed by slope failure monitored by
bathymetric surveys before and after the slump scar was created. Direct
evidence of down-slope movement of sediment, perhaps evolving into a true
turbidity current, is provided by successive cable breaks on the flat bottom

in deep water.
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The classic example cited as the best observation of turbidity current
generation is the Grand Banks earthquake and series of submarine cable breaks
that occurred off Canada in 1929. The largest historical earthgquake in
Atlantic Canada, with an estimated magnitude of 7.2 centered near the
Laurentian Channel, it resulted in 5 documented cable breaks over a distance
greater than 500 km and a period of 13.3 hours (Fig. 39 ) (Heezen and Ewing,
1952; Menard, 1964; Piper and Normark, 1982b). - Although the precise path,
velocity and sedimentary processes that caused the cable breaks have been
disputed (Menard, 1964), there is good seismic. evidence that a debris flow
more than 200 m thick followed the eastern Laurentian Channel for 100 km
(Piper and Normark, 1982), and that a surface turbidite with a distinctive red
color was laid down over the abyssal plain for a distance of up to 1,200 km
from the source (Fruth, 1965). Presence of the debris flow in the eastern
Laurentian Channel and the red-colored turbidite only on the channel floor
indicate that some of the flows and subsequent turbidity currents were
channelized (Piper and NWormark, 1982a and b; Menard, 1964). The widespread
cable breaks and occurrence of the red-colored turbidite on the lower fan and
abyssal plain, however, suggest that unchannelized turbidity currents evolved
and spread as sheet flow in the lower fan. Because of the complexity of slump
scars in the generation area and the occurrence of both channelized and sheet-
flow processes, accurate calculation of the velocities of the debris flow and
turbidity current event is impossible. Various estimates from 10 to nearly 30
m/s have been made based on timing of cable breaks in different areas (Heezen
and Ewing, 1952; Menard, 1964).

Detailed study of a recent mass movement and probable ensuing turbidity-
current event off Nice, France is now in progress. At 1400 on October 19,
1979, a 300 m2 area of the Nice airport collapsed, created an area with 50 m
water depth and "tsunami-like" waves of several meters for 100 km along the
coastline (Groupe ESCYANICE, 1982). No earthguake occurred, thus, this is
purely a sedimentological event caused by unstable and oversteepened slopes.
SEABEAM data shows a herringbone or badlands-type bathymetry in the Nice area
caused by active headward erosion of mass movement; submersible observations
reveal gravel waves on the canyon floor (Group ESCYANICE, 1982; Pautot, 1981).

Following the shoreline mass movement event, two telephone cables across
a lower canyon valley were broken at 17h45 and 22h00, at a distance of 80 and
110 km, respectively, (Group ESCYANICE, 1982). These data suggest that
turbidity currents traveled at a rate of about 6 m/s to the first locality and
4 m/s to the second locality over gradients of 1:30 and 1:300, respectively
(Gennesseau et al., 1980). If the faster rate to the first locality is
subtracted from the second locality downstream on the same path, then the
average speed is 2 m/s for the distal path of the apparent turbidity
current. This event, much smaller in scale than the Grand Banks, created
slower speeds for the entire sediment transport event.

Generation of Turbidity Currents

A fitting introduction to this topic may be to paraphrase a statement by
Middleton and Hampton (1976) that still remains accurate:

There are three main aspects to the problem of initiation of

turbidity currents: (1) What causes mass movement of sediment to
begin? (2) How do submarine mass movements, such as slides and
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slumps, turn into a variety of sediment gravity flows of which
turbidity currents are one type? (3) What transitions are possible
between one type of sediment gravity flow and another, and what
causes them to take place and result in turbidity currents? BAnswers
to these questions can only be tentative at present. The whole
question of initiation remains one of -the least studied and least
understood aspects of turbidity currents.”

Menard and Ludwick (1951) made the general suggestion that turbidity
currents may be generated by rapid introduction of sediment, agitation of
bottom sediment, and mass movement of unstable bottom sediment. Rapid
sediment introduction can be caused by flash floods and seasonal outflow of
rivers (Drake et al., 1972), windstorms (Sarnthein and Diester-Haass, 1977),
volcanic eruptions (Nelson et al., 1968) and mass flows or sheet wash off
subaerial slopes into the water. In lake water (p = 1,0), river inputs may
result in direct generation of turbidity currents; this is seldom if ever true
for river plumes entering marine water, because of the high density of saline
water and the more energetic mixing processes of the marine environment
compared to the lacustrine environment. Rapid introduction of sediment into
the marine environment results in rapid deposition on the continental terrace
(Drake et al,, 1972) from which other processes remove and transport the
sediment down-slope to depositional sites such as deep-sea fans on basin
floors.

The ocean floor of the continental terrace may be agitated by storm
waves, tidal currents, ebb flow from storm surge, tsunamis (Kastens and Cita,
1981), or major oceanic currents like the Gulf Stream. The storm- or seismic-
related events, especially in regions of rapid sedimentation from rivers, are

quite likely to generate turbidity currents. 1Intense sediment resuspension
" from storm-wave oscillatory currents, ligquefaction from storm-wave loading
{(Clukey et al., 1983) and sediment entrainment by wind-driven and storm-surge
ebb currents (Nelson, 1982) may all combine to generate turbidity currents,
especially in submarine canyon heads.

The mass movement of sediment, then, is commonly triggered by earth-
quakes, storm-wave processes, or oversteepening of slopes caused by rapid
deposition of unstable sediment, The synergistic effect of rapid deposition
of organic-rich, gas-charged deposits agitated by cyclic loading from storm
waves or seismicity results in common slope failure (Carlson and Molnia,
1977), particularly on delta fronts (Coleman et al., 1983; Carlson and Molnia,
1977} or offshore from actively glaciated terrain (Carlson, 1978) such as was
widely prevalent during glacial epochs,

Slope failure as a group of processes caused by any number of the above-
mentioned factors generates turbidity currents; the recurrence of turbidity
currents constructs deep-sea fans and is well-documented (Menard, 1964). The
association of earthquake and turbidity-current events also is well substan-
tiated (Cita and Ricci Lucchi, 1984) but does not explain the frequency of
turbidite deposition on deep-sea fans. The recurrence interval of the high-
magnitude Grand Banks earthquake (Fig. 40 ) is estimated to be approximately
100,000 years (Piper and Normark, 1982b). A similar-sized slump in the Sagami
Wan area off Japan generated by the great 8,2 magnitude Kwanto
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Speculative plot of total volume of turbidite against
frequency of initiating event (modified from Piper and Normark
1983, Fig. 10). The sizes of certain well-known turbidites
are indicated. M = Mt. Mazama tuffaceous turbidites on Astoria
Fan (Nelson 1968); d = Navy Fan Holocene (Piper and Normark
1983); P = Navy Fan Pleistocene (Piper and Normark 1983); 1 =
La Jolla canyon (Chamberlain 1964); 2 = Magdalena delta slumps
(Morgenstern 1967); 3 = ilississippi delta slumps (Morgenstern
1967); 4 = Hispaniola-Caicos basin turbidites (Bennetts and
Pilkey 1976); 5 = East Alpine flysch (Hesse 1974); 6 = Black
Shell turbidite (Elmore et al. 1979); 7 = Grand Banks
turbidite (Piper and Normark 1982). Turbidites resulting
primarily from rapid supply of sediment are shown stippled.
Sedimentologic types result from normal slope failure and
storm generation in canyon heads. Dashed lines show frequency
relationships for turbidites primarily triggered by seismic
shaking, in areas with a high and low frequency of
earthquakes.
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earthquake in 1923 (Menard, 1964) has a periodicity of about 100 years,
similar to that of major earthquakes on the San Andreas fault system.

The frequency of large earthquakes (for example every 1500 years in the
Mediterranean; Kastens, 1984) and consequent turbidity currents is not high
enough to account for the much greater number of observed turbidity current
events on modern (Nelson and Kulm, 1973) or ancient fans (Mutti, et al.,
~1984). For example, on Astoria Fan during the late Pleistocene, the minimum
rate of deposition of overbank turbidites in the upper-fan-valley region was
greater than one event every 7 years (Nelson, 1976). The frequency of
sediment flushing from submarine canyons or slumps off delta fronts is in the
range of once every 1 to 10 years (Piper and Normark, 1983). These data
indicate that earthquakes or other exceptional circumstances such as the Mt.
Mazama eruption (7000 BP) and consequent deposition of tuffaceous turbidites
in Astoria Fan (Nelson et al., 1968) are too infrequent to generate most of
the turbidites in fans. Except in volcanic caldera lakes, where numerous
volcanic eruptions and precursor earthquakes definitely influenced the rate of
turbidite formation (Nelson et al., 1983/84), "normal" but intermittent
sedimentological processes with a higher frequency than earthgquakes or
volcanic eruptions appear to be responsible for generation of most turbidity
currents.

The "sedimentological" turbidity currents generally occur in regions of
rapid sedimentation, that are prone to overloading of slopes (Piper and
Normark, 1983), particularly in areas where storm-wave energy is focused, such
as submarine canyon heads or lobate delta fronts (Reimnitz, 1971). Periodic
sediment flushing every year to several years, usually associated with storm
waves, removes the fine-grained sand of longshore drift that rapidly
accumulates in canyon heads (Chamberlain, 1964). The relatively high
frequency of storm-flushing of this sediment funneled down canyon floors and
through fan valleys appears to cause the majority of turbidity currents that
build deep-sea fans. The "storm generation" process is enhanced by lowered
sea level that allows direct access of river sediment into canyon heads. As a
result, there is a much more rapid input of unstable canyon sediment, during
lower sea-level regimes. The stratigraphic record in modern fans verifies
that most fan growth occurs during turbidite regimes of lower sea-level stands
(Nelson and Kulm, 1973). Evidence is accumulating that the same is true for
ancient deep-sea fans in the rock record (Stow et al., 1983).

Major storm events that flush the sediment from canyon heads often
persist for several days (Menard, 1964). This results in long periods of
turbidity-current generation and may help explain the sinuous fan-channel
morphology recently observed on sonographs. Sonographs (see Chapter 2,Marine
Techniques) from middle and outer fans show well-developed channel meanders
(Garrison et al., 1982; Damuth et al., 1983a). This sinuosity closely
approximates that of river channels and suggests conditions of steady flow for
some length of time during generation and deposition of deep-sea-fan valleys;
it also points towards a high frequency of intermittent depositional events to
maintain channel form.

411 of these channel-building conditions are most likely to be caused by
fregquent storm-generated turbidity currents of many hours duration, rather
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than instantaneous earthquake-generated events that are infrequent (Kastens,
1984). ©Not only channel sinuosity, but also the lower frequency, the larger
size (Mutti et al., 1984), the widespread loci (Cita et al., 1984) and the
different character of deposits from earthquake-generated events suggest that
sedimentological or storm-generated events are the main processes responsible
for development of channelized deep-sea fans. Large earthquake-generated
events usually have a low frequency of every 100-1,000 years in very
seismically active regions (Fig. 40 ) (Piper and Normark, 1983; Kastens,
1984). Large quantities of sediment typically are displaced or disrupted over
a broad rather than a focused generating region (Fig. 39 ) (Menard, 1964;
Piper and Normark, 1982; Field et al., 1982); Mutti et al., 1984). Large
debris sheets also cover major portions of the surface of the Mississippi,
Amazon, and Monterey Fans and the Ionian Abyssal Plain (Walker and Massingill,
1970; Damuth and Embley, 1981; Normark, et al., 1983; Cita et al., 1984;
Hieke, 1984). Thus, some earthquake- and sedimentologic-generated events
cause formation of major debris sheets over fans; however these are
infrequent, affect widespread generating areas, and often may result in
debris-sheet deposits, as opposed to storm-generated events, whose formation
and deposition are focused in canyons and channels (Mutti et al., 1984).

Because the frequency of sedimentologically-generated turbidity
currents is reduced in times of high sea levels, earthguake-generated mass-
transport may become the dominant episodic depositional process during high
sea-level time. The common occurrence of large and young (Nelson et al.,
1983/1984) debris sheets on present-day fans and abyssal plains may be the
result of this change in dominance from storm-generated to earthquake=-
generated regimes from late Pleistocene low sea levels to Holocene high sea
levels.

Sedimentologically-generated turbidity currents not only occur with
greater frequency and may result in different styles of deposition than those
generated by earthyuakes, but they also differ in the smaller amount of
material and lower velocity in their flows (Fig. 40 ). Very little data is
available on bottom-current speeds in canyons undergoing storm flushing of
sediment, a sedimentologically generated event; however, rare measurements
with maximum speeds up to 68 cm/s show relatively weak turbidity currents
capable of transporting large quantities of sediment down canyon (Sshepard et
al., 1979). Diving during storm conditions in the Rio Balsas Canyon, Mexico
revealed current pulses greater than 100 cm/s that transported suspended sand
down the tributary canyon floor in a flow that was at least 3 m thick
(Reimnitz, 1971). 1In contrast, the turbidity currents from the Grand Banks
earthquake must h